PROTEIN COMPOSITION OF THE BLOOD SERUM IN EXPERIMENTAL
HYPERTENSION INDUCED BY A PARTIAL CONSTRICTION OF THE LUMEN
OF V. PORTA AND ISCHEMIZATION OF THE LIVER

F. A. Morokhov

Department of Pathophysiology (Head, Prof. L. R. Perel'man) of the Leningrad Sanitary-Hygienic Medical Institute (Scientific Director, Corresponding Member of the AMN SSSR Prof. P. D. Gorizontov) (Presented by Active Member AMN SSSR I. R Petrov)

Translated from Byulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 51, No. 6, pp. 50-53, June, 1961

Original article submitted June 24, 1960

In recent years, through clinical observations by many authors [2,3,9], the development of hypertension has been established in patients suffering from thrombosis and embolism of the vessels of the abdominal cavity, as well as upon the impairment of local circulation in the liver and other pathological processes in the organs of the abdominal cavity.

We established in previous experiments on dogs [6,7] that in acute and partial constriction of the lumen of the portal vein and ischemization of the liver caused by the application of constricting ligatures a prolonged and marked hypertension develops.

The present work is devoted to the study of changes of the protein fractions of the blood serum in dogs which had been subjected to the above-stated intervention.

MET HOD

Studies were carried out on seven dogs in chronic experiments which lasted from 2 to 17 months. We performed a total of 48 refractometric and electrophoretic determinations of the composition of blood serum proteins; of these 15 were controls and 33 were carried out during the process of development of hypertension induced by the above-stated intervention. As controls, we used the indexes of the initial determinations performed twice on each dog prior to the development of hypertension, and in one dog prior to and following the operation of a laparotomy, but without constricting the portal vein and ischemization of the liver,

Blood specimens were obtained from the femoral vein. Directly after obtaining the specimen we prepared the serum in which we determined the protein content by means of a Pulfrich refractometer and electrophoresis on paper. The electrophoresis lasted 18 hours in a veronal buffer at pH 8.6, voltage 5 v/cm, and current strength of 0.3 ma on 1 cm of the cross section. The electrophoregrams were stained with bromophenol blue in an acid bichloride of mercury solution and washed off with a 1% solution of acetic acid. The quantitative evaluation of the electrophoregram was made by means of a densitometer. The densitograms were additionally checked with electrophoregrams and cut into separate pieces, each corresponding to a definite protein fraction. The pieces of paper were weighed on analytical scales, following which the percentage ratio was calculated and, taking into account the refractometric data, the content of each protein fraction was calculated in gram-percent.

RESULTS

It can be seen in the composite table of changes in the indices of protein fractions that the total protein quantity in the blood serum of normal dogs constituted 6.8% on the average (fluctuation range 6-7%); of this, 3 gm% is albumins (fluctuation range 2.4-3.3%) and 3.8 gm% is globulins (fluctuation range 3.3 to 4.2 gm%). The albumin-globulin coefficient for normal serum is 0.8.

The α_1 -globulin content equals 0.7 gm% (fluctuation range 0.4 to 1.0 gm%), α_2 -globulins - 0.9 gm%(fluctuation range 0.5 to 1.4 gm%), β -globulins - 1.1 gm% (fluctuation range 0.5 to 2.0 gm%), γ -globulins - 1 gm% (fluctuation range 0.4 to 1.4 gm%). The data obtained in our experiments for normal serum coincide with the data in the literature [4,5].

It is seen in Table 1 that the changes in protein content are characterized by an increase of the total quantity of proteins of the blood serum by 0.2 gm% on the average. The most marked increase was noted in globulins

TABLE 1. Changes in the Quantity of Serum Proteins, Arterial Pressure, and Pulse in Norm and in Hypertension in Dogs

			pressure,	per	serum pro- found (gm	Serum protein frac- tion content, gm %					
Dog⁴s name	Type of operation	Examination date	al pre	rate		ins	globulins				
Dog's			Arterial inm Hg	Pulse min	Aura. tein	albumins	tota1	α1	α2	β	۲
Norka		30/V 1957 19/VI 1957	135 138	93 98	7,0 7,0	$\frac{2,8}{3,1}$	4,2 3,9	1,0 0,6	1,4 1,0	0,9 1,1	0,9 1.2
Taiga	Control laparotomy	1/XI 1957 11/XI 1957 30/V 1957	130 134 118	94 91 70	6,8	2,6 3,3	4,0	0,5	1,0	1,5	1,0
Taiga	Constriction of portal vein lumen	5/VI 1957 19/VI 1957	126 158	74 92	6,9	$\frac{3,2}{2,7}$	$\frac{3,7}{5,0}$	$0,6 \\ 0,4$	$\frac{1.0}{2.3}$	$0,7 \\ 2,$	1,4 3
Dzhuba	Constriction of portal	29/VI 1957 30/V 1957 5/VI 1957	181 141 146	90 102 110	7,1 7.0	3,0 3,4 3,0	$\frac{3,7}{4.0}$	0.7	$\frac{1}{1},0$	$^{0,8}_{1,3}$	0,9
	vein lumen	19/VI 1957 29/VI 1957	185 193	120 122	7,8 7,5	$\begin{bmatrix} 3,7 \\ 3,1 \end{bmatrix}$	$\frac{4,2}{4,4}$	$0,4 \\ 0,5$	1,1 0,8	$0,9 \\ 1,7$	1,8 1,4
		11/XI 1957 26/III 1958 14/V 1958	236 170 160	136 108 92	7,6	3,0 $2,7$ $2,8$	4,9 4,0	$0.7 \\ 0.6$	$\frac{1}{0.8}$	$\frac{1,9}{1.5}$	$\frac{1,2}{1.1}$
	Techamination of the	26/V 1958 5/VI 1958 17/VI 1958	177 170 161	102 104 92	$\begin{bmatrix} 7,0\\7,2 \end{bmatrix}$	$\frac{2,6}{2,7}$	$\frac{4,4}{4.5}$	$0,7 \\ 0,6$	$\frac{1,2}{1.3}$	$\frac{1,6}{1.3}$	$0,9 \\ 1.3$
Sharik	Ischemization of the liver	29/VI 1958 30/V 1957	213 120	118 88	7,0	2,6 $2,5$ $3,0$	$\frac{4}{4}, 3$	$0,6 \\ 0,5$	$\frac{1,2}{0,5}$	$\overset{2}{2,0}_{i}$	$\frac{5}{1.0}$
	Ischemization of the liver	5/VI 1957 13/VI 1957 19/VI 1957	126 171	82 108	! i	3,0 2,9			-		
	·	29/VI 1957 11/XI 1957	175 142	108 98	7,4	2,9 2,6	4, 5,	[0, 5]	1,1	1.71	1,12
	Ischemization of the liver	28/XI 1957 26/III 1958 14/V 1958	141 138	102 86	6,7 6,5	$\frac{2,6}{2,4}$	4,16 4,14	0,5	1,1	1,4	1,16 1 64
	Constriction of portal vein lumen	19/V 1958 22/V 1958	130 170	92 112	$\frac{6,4}{7,2}$	$\frac{2}{2}$	$\frac{4}{4}, \frac{1}{9}$	$0,6 \\ 0,6$	1,0 1,4	$0,8 \\ 1,6$	$\frac{1,7}{1,3}$
		26/V 1958 30/V 1958 2/VI 1958	183 164 178	120 120 120	7,5	2,1 $2,6$ $2,2$	4,9	[0, 5]	1,3	2,11	1,0
Barsik		24/V 1957 30/V 1957	129 128	80 62	6,7	3,4 3,3	3,4	0,7	1,3	1.01	0,4
	Constriction of portal vein lumen	1/VI 1957 5/VI 1957 19/VI 1957	188 197	100 102	7,0 7,1	2,4 2.4	4,6 4.7	$0,4 \\ 1.3$	1,3 1.3	$\frac{1,7}{0.9}$	1,2 1.2
Kazbek	Constriction of portal	29/VI 1957 5/IV 1958 14/V 1958	199 122 113	108 80	7,0 6,8	$\frac{2,4}{2,8}$	$\frac{4,6}{4,0}$	$0,45 \\ 0,4$	1,25 1,0	$\frac{2,0}{1,6}$	$0,9 \\ 1,0$
	vein lumen	19/V 1958 26/V 1958	188 194	102 100	7,0 $7,2$	$^{2,8}_{2,3}$ 2,5	$\frac{4.7}{4.7}$	$0.8 \\ 0.5$	$0,9 \\ 1.1$	1,9	1,1 1.5
Buyan	Constriction of portal	30/V 1958 14/V 1958 19/V 1958	204 121 121	104 80 86	7,3 6,9	$2.5 \\ 2.3 \\ 2.8$	4,8 4,15	$\frac{1,5}{0,5}$	$\frac{1.8}{0.9}$	$\frac{1,0}{1.6}$	0,5 1,25
	vein lumen	22/V 1958 26/V 1958	176 178	102 104	6,6 6,3	2,5 $2,4$	$\frac{4}{3}, \frac{1}{9}$	0,6	$0,9 \\ 1,0$	$\frac{1.7}{1.6}$	$0.9 \\ 0.7$
	Ischemization of the liver	30/V 1958 2/VI 1958 17/VI 1958 29/VI 1958	184 165 133 156	106 114 80 82	6,0 6,6	2,1 2,2 2,4 3,0	$\frac{4,76}{4,2}$	$0,6 \\ 1,3$	$\frac{1,2}{0,9}$	1.3	1,66 1,2

TABLE 2. Statistical Analysis of the Data Cited in Table 1

	Symbol	Serum protein content, gm%	Serum protein fraction content, gm%							
Index			globulins							
			glo- bulins	albu- mins	α ₁	α2	β	Υ		
Arithmetical mean in norm	M_1	6,8	3,0	3,8	0,7	0,9	1,1	1,0		
Arithmetical mean in hypertension	M_2	7,0	2,6	4,4	0,6	1,1	1,5	1,2		
Mean square deviation in norm	$\sigma_1 \pm$	0,355	0,251	0,295	0,277	0,232	0,408	0,427		
Mean square deviation in hyperten-	σ ₂ ±	0,679	0,316	0,358	0,25	0,39	0,379	0,320		
sion Standard deviation in norm	$m_1\pm$	0,094	0,067	0,079	0,072	0,062	0,136	0,066		
Standard deviation in hypertension	$m_2 \pm$	0,118	0,05	0,062	0,045	0,067	0,074	0,062		
Index of the difference of the data significance Difference probability	T P	1,3 0,2	4,7 0,01	6,0 0,001	$\begin{array}{c} 2,5 \\ 0,05 \end{array}$	2,2 0,05	2,7 0.05	2,2 0,05		

(by 0.6 gm% on the average, fluctuation range 3.6-5.0 gm%), whereas the quantity of albumins showed a regular decrease (by 0.4 gm% on the average, fluctuation range 3.1-2.1 gm%).

Changes in separate globulin fractions were not uniform in their magnitude. For instance, the content of α_1 -globulins changed least of all, whether in the direction of an increase or decrease, and in one dog no changes were observed. The content of all other globulin fractions in all dogs showed a regular increase: α_2 -globulins by 0.2 gm% on the average (fluctuation range 0.8-2.5 gm%), β -globulins by 0.4 gm% (fluctuation range 0.8-2.1 gm%) and γ -globulins by 0.2 gm% (fluctuation range 0.5-1.8 gm%). Statistical analysis of the data obtained demonstrated their reliability (Table 2).

The data in the literature and the results of our experiments prove convincingly that the change in α_2 -globulin content takes place in various deseases and various influences which are accompanied by the "stress" state according to Selye. On this basis we may assume that the changes in the α_2 -globulin content cannot be placed in strict dependence on the development of hypertension only. In the process of development of the hypertension model in our experiments, as well as in renal-ischemic hypertension as per Page and Lewis [11] and M. Ya. Khodas [10], definite changes have been observed in the direction of an increased content of β - and γ -globulins. In addition, S. V. Belyakova [1] reports that in hypertensive patients an incease of the quantity of fibrinogen takes place.

In the literature devoted to the problem of allergy, the γ -globulin fraction of serum proteins is referred to as the material substrate of various antibodies, including autocytolysins. It is a known fact that nephrocytolysins represent the pathogenetic factor in the development of glomerulonephritis and marked hypertension. This fact has been also corroborated experimentally. The increase in the amount of γ -globulins which we have observed in all experimental dogs leads us to the assumption of their possible pathogenetic role in the development of hypertension.

SUMMARY

Protein composition of the blood serum was examined in 7 dogs prior to and after the development of hypertension caused by a partial constriction of the portial vein lumen and ischemization of the liver. A total of 48 experiments were carried out; 15 of these were control and 33 with hypertension. As established, an increase in the blood serum globulins and a reduction of albumins were seen in all the animals with hypertension. A rise of the β - and γ -globulin fractions was noted; there was also a change in the direction of increase or reduction of α_1 -globulins. On the basis of literature data and personal experiments, a conclusion is drawn that the change in the serum α_2 -globulin content is not specific for the hypertensive states.

LITERATURE CITED

- 1. Belyakova, S. V., Klin. Med., Supplement 34, (1957) p. 3.
- 2. Blinov, N. I., Klin. Med. 30 (1952) p. 81.
- 3. Gerke, A. A., in the book: Thrombi and Emboli [in Russian], 5 (Moscow, 1951) p. 190.
- 4. Islamov, I. I., in the book: Data on the Pathogeneis of Inflammation and the Pathology of Vascular Permeability [in Russian] (Stalinabad, 1954) p. 99.
- 5. Lapteva, N. N., Zhurnal Nevropatol, i Psikhiatr. 58, 2 (1958) p. 150.
- 6. Morokhov, F. A., Arkhiv Patologii 18, 7 (1956) p. 54.
- 7. Morokhov, F. A., Arkh. Pat. 19, 3 (1957) p. 25,
- 8. Myasnikov, A. L., Hypertensive Disease [in Russian] (Moscow, 1954) p. 260.
- 9. Novinskaya, L. D., Klin. Med. 35, 4 (1957) p. 122.
- 10. Khodas, M. Ya., in the book: Voprosy Meditsinskoi Khimii [in Russian] 5 (Moscow, 1953) p. 105.
- 11. Lewis, L. A. and Page, I. H., J. exp. Med. 86 (1957) p. 185.

All abbreviations of periodicals in the above bibliography are letter-by-letter transliterations of the abbreviations as given in the original Russian journal. Some or all of this periodical literature may well be available in English translation. A complete list of the cover-to-cover English translations appears at the back of this issue.